On sequences of finitely generated discrete groups
نویسنده
چکیده
We consider sequences of discrete subgroups Γi = ρi(Γ) of a rank 1 Lie group G, with Γ finitely generated. We show that, for algebraically convergent sequences (Γi), unless Γi’s are (eventually) elementary or contain normal finite subgroups of arbitrarily high order, their algebraic limit is a discrete nonelementary subgroup of G. In the case of divergent sequences (Γi) we show that the resulting action Γ y T on a real tree satisfies certain semistability condition, which generalizes the notion of stability introduced by Rips. We then verify that the group Γ splits as an amalgam or HNN extension of finitely generated groups, so that the edge group has an amenable image in Isom(T ).
منابع مشابه
Some Results on Baer's Theorem
Baer has shown that, for a group G, finiteness of G=Zi(G) implies finiteness of ɣi+1(G). In this paper we will show that the converse is true provided that G=Zi(G) is finitely generated. In particular, when G is a finite nilpotent group we show that |G=Zi(G)| divides |ɣi+1(G)|d′ i(G), where d′i(G) =(d( G /Zi(G)))i.
متن کاملFinitely Generated Annihilating-Ideal Graph of Commutative Rings
Let $R$ be a commutative ring and $mathbb{A}(R)$ be the set of all ideals with non-zero annihilators. Assume that $mathbb{A}^*(R)=mathbb{A}(R)diagdown {0}$ and $mathbb{F}(R)$ denote the set of all finitely generated ideals of $R$. In this paper, we introduce and investigate the {it finitely generated subgraph} of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_F(R)$. It is the (undi...
متن کاملOn Regularity of Acts
In this article we give a characterization of monoids for which torsion freeness, ((principal) weak, strong) flatness, equalizer flatness or Condition (E) of finitely generated and (mono) cyclic acts and Condition (P) of finitely generated and cyclic acts implies regularity. A characterization of monoids for which all (finitely generated, (mono) cyclic acts are regular will be given too. We als...
متن کاملMULTIPLICATION MODULES THAT ARE FINITELY GENERATED
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...
متن کاملA characterization of finitely generated multiplication modules
Let $R$ be a commutative ring with identity and $M$ be a finitely generated unital $R$-module. In this paper, first we give necessary and sufficient conditions that a finitely generated module to be a multiplication module. Moreover, we investigate some conditions which imply that the module $M$ is the direct sum of some cyclic modules and free modules. Then some properties of Fitting ideals o...
متن کامل